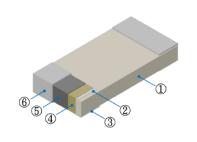

Resistive Product Solutions

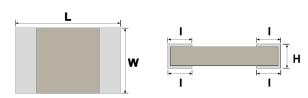
Features:

- Chip size from 0603 to 2512
- High thermal conductivity AIN substrate
- Low capacitance
- High insulation resistance between terminals
- RoHS compliant, REACH compliant, lead free, and halogen free



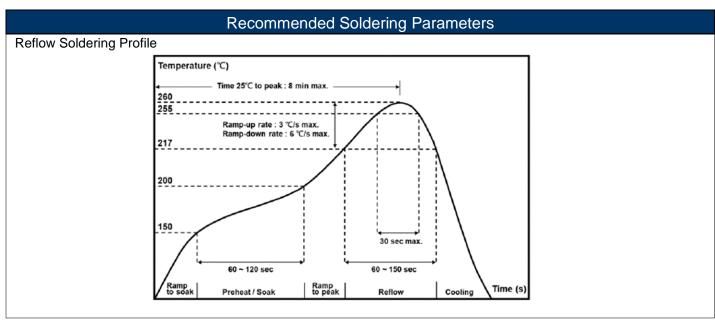
Electrical Specifications							
Type/Code	Thermal Resistance (°C/W), R _t	Thermal Conductance (mW/°C), G _t	Dielectric Withstanding Voltage kV _{AC} , RMS (60 Hz)	Operating Temperature Range (°C)	Storage Temperature Range (°C)	Substrate Material	
TMJ0603C_0048	21	48					
TMJ0612G_0216	5	216				Alumainuma mitrida	
TMJ1206G_0055	18	55	> 1.5 -55°C to +155°C	-55°C to +155°C	Aluminum nitride (170 W/mK)		
TMJ1225G_0216	5	216				(170 W/IIIK)	
TMJ2512G_0053	19	53					

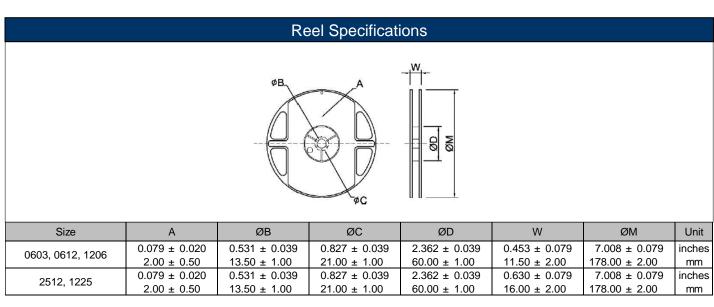
Note: $R_t = \frac{L}{k(H^*W)}$; $G_t = 1/R_t$


k = 170 W/mK (the termal conductivity of AIN)

Construction Diagram

Reference	Description		
1 Aluminum Nitride Substrate			
2 Top Inner Electrode			
3	Bottom Inner Electrode		
4 Side Inner Electrode			
5	Nickel Barrier		
6	Solder Coating (Sn)		


Mechanical Specifications



Type/Code	L	W	Н	i	Unit
TMJ0603C 0048	0.063 ± 0.005	0.031 ± 0.005	0.022 ± 0.005	0.016 ± 0.005	inches
11030003C_0048	1.60 ± 0.13	0.80 ± 0.13	0.55 ± 0.13	0.40 ± 0.13	mm
TMJ0612G 0216	0.063 ± 0.005	0.126 ± 0.005	0.028 ± 0.005	0.016 ± 0.005	inches
110130012G_0210	1.60 ± 0.13	3.20 ± 0.13	0.70 ± 0.13	0.40 ± 0.13	mm
TMJ1206G 0055	0.126 ± 0.005	0.063 ± 0.005	0.028 ± 0.005	0.020 ± 0.005	inches
110112000_0055	3.20 ± 0.13	1.60 ± 0.13	0.70 ± 0.13	0.50 ± 0.13	mm
TMJ1225G 0216	0.126 ± 0.005	0.252 ± 0.005	0.028 ± 0.005	0.024 ± 0.005	inches
110112230_0210	3.20 ± 0.13	6.40 ± 0.13	0.70 ± 0.13	0.60 ± 0.13	mm
TMJ2512G 0053	0.252 ± 0.005	0.126 ± 0.005	0.028 ± 0.005	0.024 ± 0.005	inches
110023120_0033	6.40 ± 0.13	3.20 ± 0.13	0.70 ± 0.13	0.60 ± 0.13	mm

Resistive Product Solutions

Performance Characteristics					
Test	Test Method	Test Condition	Test Specification		
Solderability	erability JIS-C-5201-1 4.17 245 ± 5°C for 3 seconds		>95% coverage No visual damage		
Solder Mounting Integrity	MIL-PRF-55342 method par. 4.8.13.1	For size 0603 applied 9.8N Sizes 0612 and above applied 19.6N for 60 ± 1 seconds	No visual damage		
Bending Strength JIS-C-5201-1 4.33 IEC-60115-1 4.33		Bending once for 5 seconds D: 0603 = 5mm 1206 - 0613 = 3mm 2512 - 1225 = 2mm	No visual damage		

0612

1206

0.059 +0.004/-0.00

1.50 +0.10/-0.00

 0.157 ± 0.004

 4.00 ± 0.10

 0.079 ± 0.002

 2.00 ± 0.05

Resistive Product Solutions

 0.157 ± 0.004

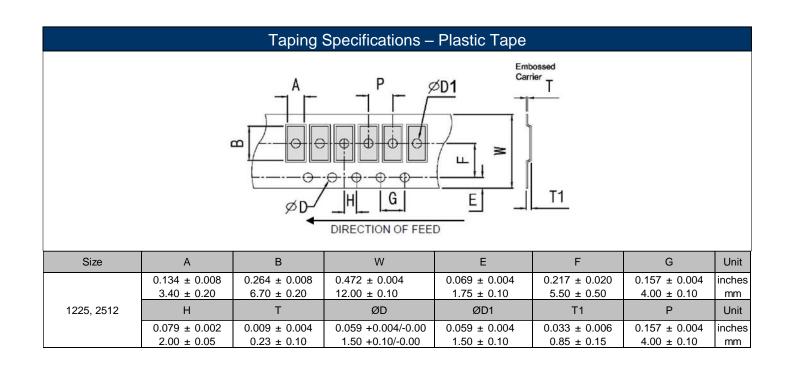
 4.00 ± 0.10

inches

 mm

inches

 $\,\mathrm{mm}$


Taping Specifications - Paper Tape Paper Carrier DIRECTION OF FEED Size Α В W Е F Unit 0.041 ± 0.008 0.071 ± 0.008 inches 0603 1.05 ± 0.20 1.80 ± 0.20 mm 0.112 ± 0.008 0.120 ± 0.008 0.315 ± 0.008 0.069 ± 0.004 0.138 ± 0.002 inches 0612 2.85 ± 0.20 3.05 ± 0.20 8.00 ± 0.20 1.75 ± 0.10 3.50 ± 0.05 mm 0.075 ± 0.008 0.138 ± 0.008 inches 1206 1.90 ± 0.20 3.50 ± 0.20 mm Р Type/Code G Н Т ØD Unit 0.024 ± 0.004 inches 0603 0.60 ± 0.10 mm

 0.030 ± 0.004

 0.75 ± 0.10

 0.030 ± 0.004

 0.75 ± 0.10

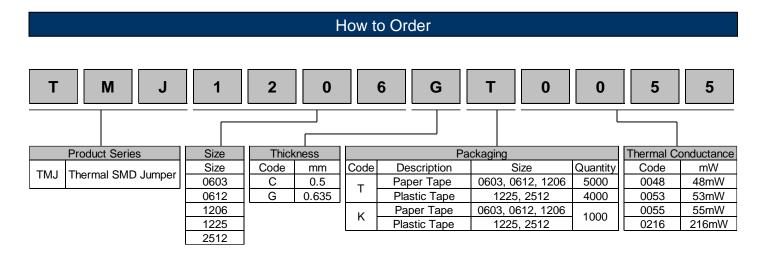
Resistive Product Solutions

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

RoHS Compliance Status						
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)
TMJ	Thermal SMD Jumper	SMD	YES	100% Matte Sn over Ni	Always	Always

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

4

Rev Date: 5/8/2024