Resistive Product Solutions

Features:

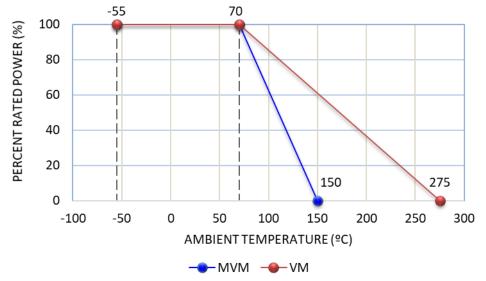
- Flameproof inorganic construction
- High temperature potting compound
- VM Wirewound element
- MVM Metal oxide element for higher values
- RoHS compliant, REACH compliant, halogen free, and lead free without exemption

Electrical Specifications							
Type/Code	Power Rating (W) @ 70°C	Voltage Rating (V)	TCR (ppm/°C)	Ohmic Range (Ω) and Tolerance			
1 9 00 0000				5%	10%		
VM2	2	250		0.056 - 100			
VM3	3	300	< 1Ω = ± 700 ppm/ºC ≥ 1Ω = ± 200 ppm/ºC	0.1	- 100		
VM5	5	350		0.1	- 100		
VM7	7	500	$= 10 - \pm 200 \text{ ppm/sc}$	0.39	- 470		
VM10	10	700		0.56	- 680		
MVM2	2	250		0.1 - 51K	-		
MVM3	3	300	± 200 ppm/ºC	0.1 - 51K	-		
MVM5	5	350		0.1 - 51K	-		
MVM7	7	500		510 - 51K	-		
MVM10	10	700		750 - 51K	-		

Maximum Working Voltage is limited by $\sqrt{(P^*R)}$ unless specified otherwise.

Mechanical Specifications							
VM: WVVM: WVM:							
Type / Code	А	В	С	D	Lead Diameter	Lead Length	Unit
VM2 / MVM2	0.276 ± 0.039	0.807 ± 0.039	0.433 ± 0.039	0.197 ± 0.039	0.031 ± 0.002	0.138 ± 0.020	inches
	7.00 ± 1.00	20.50 ± 1.00	11.00 ± 1.00	5.00 ± 1.00	0.80 ± 0.05	3.50 ± 0.50	mm
VM3 / MVM3	0.335 ± 0.039	0.984 ± 0.039	0.492 ± 0.039	0.197 ± 0.039	0.031 ± 0.002	0.138 ± 0.020	inches
	8.50 ± 1.00	25.00 ± 1.00	12.50 ± 1.00	5.00 ± 1.00	0.80 ± 0.05	3.50 ± 0.50	mm
VM5 / MVM5	0.374 ± 0.039	0.984 ± 0.039	0.512 ± 0.039	0.197 ± 0.039	0.031 ± 0.002	0.138 ± 0.020	inches
	9.50 ± 1.00	25.00 ± 1.00	13.00 ± 1.00	5.00 ± 1.00	0.80 ± 0.05	3.50 ± 0.50	mm
VM7 / MVM7	0.374 ± 0.039	1.535 ± 0.059	0.512 ± 0.039	0.197 ± 0.039	0.031 ± 0.002	0.138 ± 0.020	inches
	9.50 ± 1.00	39.00 ± 1.50	13.00 ± 1.00	5.00 ± 1.00	0.80 ± 0.05	3.50 ± 0.50	mm
VM10 / MVM10	0.472 ± 0.039	1.378 ± 0.039	0.630 ± 0.039	0.295 ± 0.039	0.031 ± 0.002	0.138 ± 0.020	inches
	12.00 ± 1.00	35.00 ± 1.00	16.00 ± 1.00	7.50 ± 1.00	0.80 ± 0.05	3.50 ± 0.50	mm

VM / MVM Series


Ceramic Housed Vertical Mount Resistor

Resistive Product Solutions

Performance Characteristics					
Moisture Resistance	± 5%				
Thermal Shock	± 2%				
Load Life @ 70°C - 1000 hours	± 5%				
Resistance to Soldering Heat	± 2%				
Short Time Overload - 5 x Pn for 5 seconds	± 2%				
Dielectric Withstanding Voltage	± 2%				

Operational temperature range is -55 to 275°C for VM and -55 to 150°C for MVM.

Power Derating Curve:

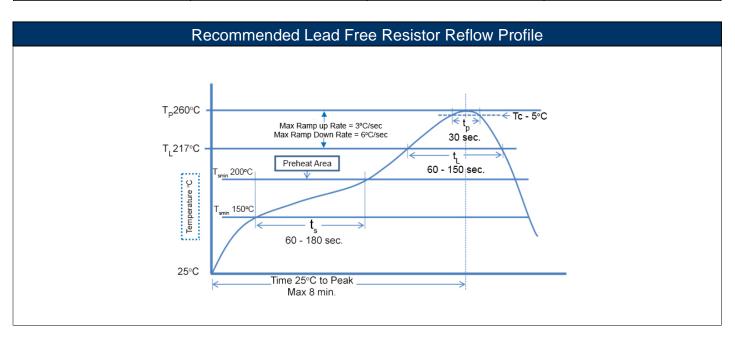
Recommended Solder Profile

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".

100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330°C to 350°C with minimum duration. Maximum number of reflow cycles: 3.

Wave Soldering					
Description Maximum Recommended Minimum					
Preheat Time	80 seconds	70 seconds	60 seconds		
Temperature Diff.	140°C	120°C	100°C		
Solder Temp.	260°C	250°C	240°C		
Dwell Time at Max.	10 seconds	5 seconds	*		
Ramp DN (°C/sec)	N/A	N/A	N/A		


Temperature Diff. = Difference between final preheat stage and soldering stage.

VM / MVM Series

Ceramic Housed Vertical Mount Resistor

Resistive Product Solutions

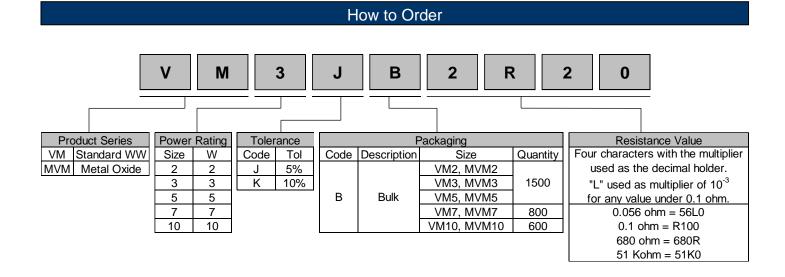
Convection IR Reflow						
Description	Maximum	Recommended	Minimum			
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*			
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds			
Solder Temp.	260°C	245°C	*			
Dwell Time at Max.	30 seconds	15 seconds	10 seconds			
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*			

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status							
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)		
VM	Ceramic Housed Vertical Mount Wirewound Resistor (Standard WW)	Radial	YES	100% Matte Sn	Jan-06	06/01		
MVM	Ceramic Housed Vertical Mount Wirewound Resistor (Metal Oxide)	Radial	YES	100% Matte Sn	Jan-06	06/01		

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the Eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

