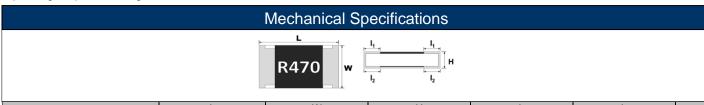
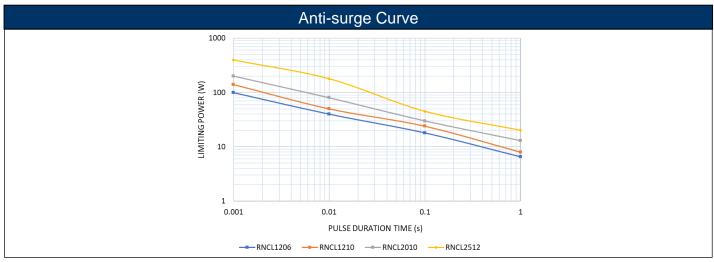
Features:

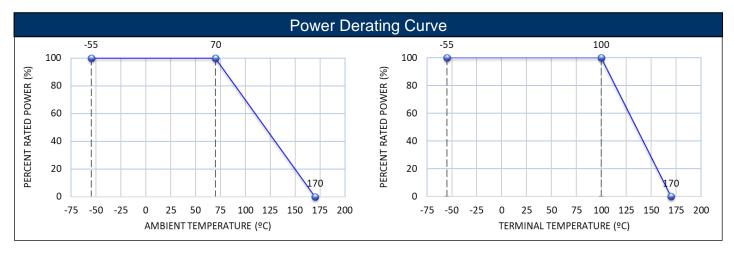
- Low resistance
- Low TCR
- Typical Inductance of ≤ 5 nH
- · Excellent long-term stability
- · High precision current sensing
- High rated power capability and excellent anti-surge
- · RoHS compliant, REACH compliant, lead free, and halogen free
- AEC-Q200 compliant



Electrical Specifications						
Type/Code	Power Rating (W)	TCR (ppm/°C)	Ohmic Range (Ω) and Tolerance			
1 ype/Gode	@ 70°C	Τοιτ (ρριίν ο)	0.5%, 1%, 5%			
RNCL1206	1	± 100	0.05 - 0.091			
KNCL1200	'	± 50	0.1 - 33			
RNCL1210	1	± 100	0.05 - 0.091			
RNCL1210	1	± 50	0.1 - 33			
RNCL2010	1.5	± 50	0.05 - 50			
RNCL2512	2	± 50	0.05 - 50			


Max. Working Voltage = $(P^*R)^{1/2}$; P = Rated Power (W); R = Resistance Value (Ω)

Non-standard values may be available. Please contact Stackpole Electronics.


Operating temperature range is -55 to +170°C

Type/Code	L	W	Н	I ₁	l ₂	Unit
1 ype/Code	Body Length	Body Width	Body Height	Top Termination	Bottom Termination	Offic
RNCL1206	0.122 ± 0.004	0.063 ± 0.004	0.022 ± 0.004	0.016 ± 0.008	0.018 ± 0.008	inches
KNGL1200	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.40 ± 0.20	0.45 ± 0.20	mm
RNCL1210	0.122 ± 0.004	0.098 ± 0.006	0.022 ± 0.004	0.020 ± 0.008	0.020 ± 0.008	inches
KNGL1210	3.10 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.50 ± 0.20	0.50 ± 0.20	mm
RNCL2010	0.197 ± 0.008	0.098 ± 0.006	0.022 ± 0.004	0.024 ± 0.010	0.024 ± 0.010	inches
KNCL2010	5.00 ± 0.20	2.50 ± 0.15	0.55 ± 0.10	0.60 ± 0.25	0.60 ± 0.25	mm
RNCL2512	0.248 ± 0.008	0.126 ± 0.008	0.022 ± 0.004	0.026 ± 0.010	0.026 ± 0.010	inches
RINGLZSTZ	6.30 ± 0.20	3.20 ± 0.20	0.55 ± 0.10	0.65 ± 0.25	0.65 ± 0.25	mm

1

The Operating Temperature Range is -55 to +170°C.

Power rating or current rating is based on continuous full-load at ambient temperature of 70°C. For operation at ambient temperature above 70°C, the load should be derated in accordance with the Power Derating Curve. (Terminal temperature derating from 100°C.

Rated Current

Resistance Range: $< 1\Omega$

Rated Current: The resistor shall have a DC continuous working current or an AC (rms) continuous working current at commercial-line frequency and wave form corresponding to the power rating, as per formula below:

$$I = \sqrt{P/R}$$

I = Rated current (A)

P = Rated power (W)

 $R = Nominal resistance (\Omega)$

Rated Voltage

Resistance Range: ≥ 1 Ω

Rated Voltage: The resistor shall have a DC continuous working voltage or an RMS AC continuous working voltage at commercial-line frequency and wave form corresponding to the power rating, as per formula below:

$$V = \sqrt{P*R}$$

V = Rated voltage (V)

P = Rated power (W)

 $R = Nominal resistance (\Omega)$

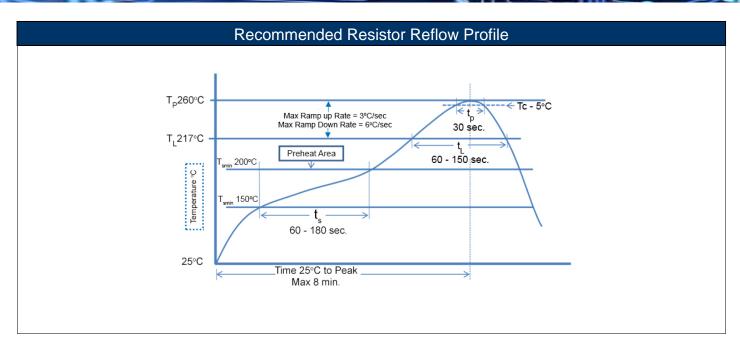
	Performance Characteristics							
Test Item	Test Method	Test Condition	Test Limits					
Temperature Coefficient of Resistance (TCR)	JIS C-5201-1 4.8 IEC-60115-1 4.8	At 25°C / +125°C, 25°C is the reference temperature.	Refer to Electrical Specifications table					
Short Time Overload	JIS C-5201-1 4.13 IEC-60115-1 4.13	5 times rated power whichever is less for 5 seconds	± (1% + 0.001Ω)					
Insulation Resistance	JIS C-5201-1 4.6 IEC-60115-1 4.6	Applied 100 VDC for 1 minute	≥ 10GΩ					
Dielectric Withstanding Voltage	JIS C-5201-1 4.7	Applied 500 VAC for 1 minute	No short or burned on the appearance					
Core Body Strength	JIS C-5201-1 4.15	Central part pressurizing force: 10 N for 10 seconds	No breakage.					
Solderability	JIS C-5201-1 4.17	245 ± 5°C for 3 seconds	> 95% coverage					
Soluerability	IEC-60115-1 4.17	240 ± 0 0 101 3 Seconds	no visual damage					
Resistance to Soldering	JIS C-5201-1 4.18	260 ± 5°C for 10 seconds	± (1% + 0.001Ω)					
Heat	IEC-60115-1 4.18	255 25 5 151 10 00001100	No visual damage					

Performance Characteristics (cont.)						
Test Item	Test Method	Test Condition	Test Limits			
Leaching	JIS C5201-1 4.18 IEC-60068-2-58 8.2.1	260 ± 5°C for 30 seconds	> 95% coverage no visual damage			
Rapid Change of Temperature	JIS C-5201-1 4.19 IEC-60115-1 4.19	-55 to +155°C, 300 cycles	\pm (1% + 0.001Ω) No visual damage			
Damp Heat with Load	JIS C-5201-1 4.24 IEC-60115-1 4.24	40 ± 2°C, 90 ~ 95% R.H., RCWV or max. working current whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"	± (1% + 0.001Ω)			
Biased Humidity	MIL-STD-202 Method 103	1000 hours; 85°C/85% RH, 10% of operating power. Measurement at 24 ± 4 hours after test conclusion.	± (1% + 0.05Ω)			
Load Life (Endurance)	JIS C-5201-1 4.25 IEC-60115-1 4.25.1	70 ± 2°C, rated power or max. working current whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hours "OFF"	± (1% + 0.001Ω)			
High Temperature Exposure	JIS C-5201-1 4.23.2 IEC 60068-2-2	At +170 ± 5°C for 1000 hours	± (1% + 0.001Ω)			
Resistance to Solvent	JIS C-5201-1 4.29	The tested resistor will be immersed into isopropyl alcohol of 20 ~ 25°C for 60 seconds. Then the resistor is left in room for 48 hours	± (1% + 0.001Ω) No visual damage			
Terminal Strength	JIS C-5201-1 4.32 AEC Q200-006	ŭ				
Bending Strength	JIS C-5201-1 4.33 IEC-60115-1 4.33	Bending once for 5 seconds. D: 1206-1210 = 3 mm; 2010-2512 = 2 mm	± (1% + 0.001Ω) No visual damage			

Temperature coefficient of resistance test to -55°C and AEC-Q200 test reports available upon request. Contact Stackpole Electronics. Recommended storage temperature is 15 to 28°C and humidity < 80% R.H.

Recommended Solder Profile

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".


100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330 to 350°C with minimum duration. Maximum number of reflow cycles: 3.

Wave Soldering					
Description	Maximum	Recommended	Minimum		
Preheat Time	80 seconds	70 seconds	60 seconds		
Temperature Diff.	140°C	120°C	100°C		
Solder Temp.	260°C	250°C	240°C		
Dwell Time at Max.	10 seconds	5 seconds	*		
Ramp DN (°C/sec)	N/A	N/A	N/A		

Temperature Diff. = Difference between final preheat stage and soldering stage.

Convection IR Reflow						
Description	Maximum	Recommended	Minimum			
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*			
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds			
Solder Temp.	260°C	245°C	*			
Dwell Time at Max.	30 seconds	15 seconds	10 seconds			
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*			

Recommended Pad Layout C В В С Unit Type/Code Α 0.087 0.165 0.071 inches RNCL1206 2.20 4.20 1.80 mm 0.079 0.173 0.106 inches RNCL1210 2.00 4.40 2.70

0.260

6.60

0.319

8.10

0.150

3.80

0.193

4.90

RNCL2010

RNCL2512

0.106

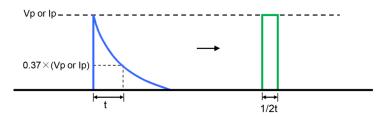
2.70

0.134

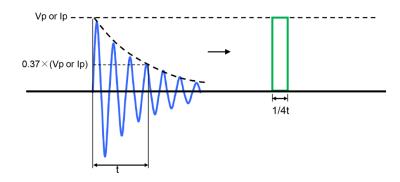
3.40

mm

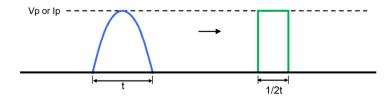
inches

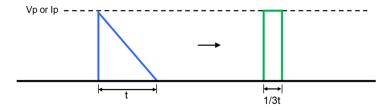

 $\,\mathrm{mm}$

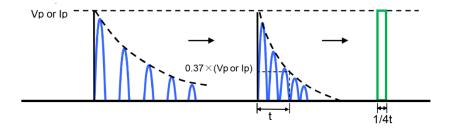
inches

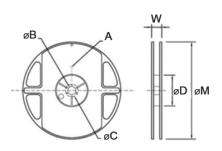

 $\,\mathrm{mm}$

Waveform Transformation to Square Wave

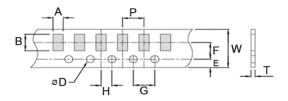

1. Discharge curve wave with time constant "t" → Square wave


2. Damping oscillation wave with time constant of envelope "t" → Square wave

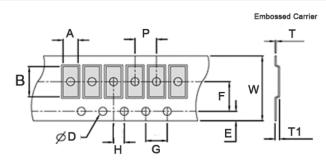

3. Half-wave rectification wave → Square wave


4. Triangular wave → Square wave

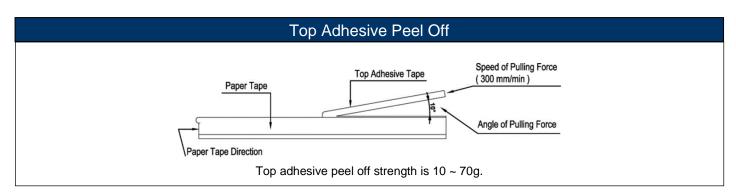
5. Special wave → Square wave



Reel Specifications


Type/Code	А	В	С	D	W	М	Unit
RNCL1206	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.453 ± 0.079	7.008 ± 0.079	inches
RNGL1200	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	11.50 ± 2.00	178.00 ± 2.00	mm
RNCL1210	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.453 ± 0.079	7.008 ± 0.079	inches
KNOLIZIO	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	11.50 ± 2.00	178.00 ± 2.00	mm
RNCL2010	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.630 ± 0.079	7.008 ± 0.079	inches
KNCL2010	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	16.00 ± 2.00	178.00 ± 2.00	mm
RNCL2512	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.630 ± 0.079	7.008 ± 0.079	inches
	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	16.00 ± 2.00	178.00 ± 2.00	mm

Packaging Specifications – Paper Tape


Type/Code	A	В	W	E	F	Unit
RNCL1206	0.075 ± 0.008	0.120 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
KNGL1200	1.90 ± 0.20	3.05 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
RNCL1210	0.112 ± 0.008	0.120 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
KNGL1210	2.85 ± 0.20	3.05 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
Type/Code	G	Н	Т	Р	D	Unit
RNCL1206	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.157 ± 0.004	0.059 +0.004/-0	inches
RINCL 1206	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	4.00 ± 0.10	1.50 +0.10/-0	mm
RNCL1210	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.157 ± 0.004	0.059 +0.004/-0	inches
ININGLIZIO	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	4.00 ± 0.10	1.50 +0.10/-0	mm

Packaging Specifications – Plastic Tape

Type/Code	А	В	W	E	F	G	Unit
RNCL2010	0.110 ± 0.008	0.220 ± 0.008	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches
	2.80 ± 0.20	5.60 ± 0.20	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm
RNCL2512	0.134 ± 0.008	0.264 ± 0.008	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches
	3.40 ± 0.20	6.70 ± 0.20	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm

Type/Code	Н	Т	T1	Р	D	D1	Unit
RNCL2010	0.079 ± 0.002	0.009 ± 0.004	0.033 ± 0.006	0.157 ± 0.004	0.059 +0.004/-0	0.059 ± 0.004	inches
	2.00 ± 0.05	0.23 ± 0.10	0.85 ± 0.15	4.00 ± 0.10	1.50 +0.10/-0	1.50 ± 0.10	mm
RNCL2512	0.079 ± 0.002	0.009 ± 0.004	0.033 ± 0.006	0.157 ± 0.004	0.059 +0.004/-0	0.059 ± 0.004	inches
	2.00 ± 0.05	0.23 ± 0.10	0.85 ± 0.15	4.00 ± 0.10	1.50 +0.10/-0	1.50 ± 0.10	mm

Part Marking

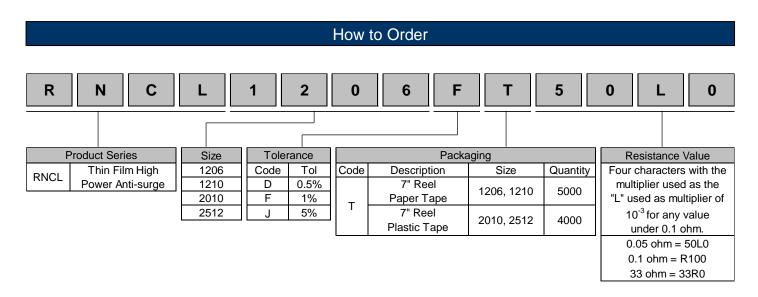
The nominal resistance is marked on the surface of the part with the use of four-character marking, with the letter "R" used as the decimal place holder.

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status								
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)			
RNCL	Thin Film High Power Anti-Surge Chip Resistor	SMD	YES	100% Matte Sn over Ni	Always	Always			

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

