RMCF / RMCP Series General Purpose Thick Film Standard Power and High-Power Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Features:

- RMCF standard power ratings
- RMCP high power ratings
- Nickel barrier terminations standard
- Power derating from 100% at 70°C to zero at +155°C
- RoHS compliant, REACH compliant, and halogen free
- AEC-Q200 compliant (except 01005 and 0201 sizes)
- For ultra-high power, see <u>RMCP-UP Series Thick Film Ultra High-Power Chip Resistor</u>

Electrical Specifications - RMCF							
Type/Code	Power Rating (W)	Max. Working	Max. Overload	Jumper Rated Current (A)	TCR (ppm/⁰C)	Ohmic Range (Ω)	
	@ 70ºC	Voltage (V) (1)	Voltage (V)			1%	5%
RMCF01005	0.03	15	30	0.5	± 300	10 -	
					± 200	100	
RMCF0201	0.05	25	50	0.5	± 400	1 - 9	
		-			± 200	10 -	
					± 200	1 - 9	
RMCF0402	0.063	50	100	1	± 100	10 -	
					± 200	1.02M - 22.1M	1.1M - 22M
					± 500	0.1 - 0.499	
					± 400	0.5 -	0.976
RMCF0603	0.1	0.1 75	150	1	± 200	1 - 9.76	1 - 22M
					± 100	10 - 1M	-
					± 200	1.02M - 22.1M	-
					± 200	0.1 - 9.76	0.1 - 22M
RMCF0805	0.125	150	300	2	± 100	10 - 1M	-
					± 200	1.02M - 22.1M	-
					± 200	0.1 - 9.76	0.1 - 22M
RMCF1206	0.25	200	400	2	± 100	10 - 1M	-
					± 200	1.02M - 22.1M	-
					± 200	0.1 - (0.976
RMCF1210	0.5	200	400	3	± 400	1 - 9	9.76
					± 100	10 - 10M	
					± 200	0.1 - (0.976
DMOE0040	0.75	000	400		± 400	1 - 9	9.76
RMCF2010	0.75	200	400	3	± 200	-	10 - 10M
					± 100	10 - 10M	-
					± 200	0.1 - (0.976
DMOFASIA		000	400	<u> </u>	± 400	1 - 9	9.76
RMCF2512	1	200	400	3	± 200	-	10 - 10M
					± 100	10 - 10M	-

Notes: (1) Lesser of $\sqrt{(P^*R)}$ or maximum working voltage

(2) Contact Stackpole for higher or lower values

RMCF / RMCP Series General Purpose Thick Film Standard Power

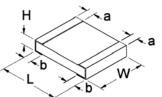
Stackpole Electronics, Inc. Resistive Product Solutions

and High-Power Chip Resistor

Electrical Specifications - RMCP						
Type/Code	Power Rating (W)	Max. Working	Max. Overload	Jumper Rated Current (A)	TCR (ppm/ºC)	Ohmic Range (Ω) and Tolerance ⁽²⁾
	@ 70ºC	Voltage (V) ⁽¹⁾	Voltage (V)			1%, 5%
RMCP0201	0.063	25	50	1	-200 / +400	1 - 9.76
	0.005	25	50		± 200	10 - 10M
RMCP0402	0.125	50	100	1.5	± 200	1 - 9.76
RIVICE 0402	0.125	50	100	1.5	± 100	10 - 10M
RMCP0603	0.25	75	150	2	± 200	1 - 9.76
RIVICEU003	0.25	75	150	2	± 100	10 - 10M
RMCP0805	0.33	150	300	2.5	± 200	1 - 9.76
RIVICPUOUD	0.33	150	300	2.5	± 100	10 - 10M
RMCP1206	0.5	200	400	3.5	± 400	1 - 9.76
	0.5	200	400	3.5	± 100	10 - 10M
RMCP1210	0.66	200	400	5	± 400	1 - 9.76
RIVICP1210	0.00	200	400	5	± 100	10 - 10M
RMCP2010	1	200	400	6	± 200	1 - 9.76
RIVICP2010	I	200	400	6	± 100	10 - 10M
RMCP2512	2	250	500	7	± 200	1 - 9.76
RIVICE2512	2	250	500	1	± 100	10 - 10M

Notes: (1) Lesser of $\sqrt{(P^*R)}$ or maximum working voltage

(2) Contact Stackpole for higher or lower values


The resistance value range for RMCP jumper is max. 0.02Ω

Electrical Specifications - RMCF Jumper							
Type/Code	Jumper Rated Current (A)	Max Overload Current (A)*	Jumper Resistance Value (Ω)				
RMCF01005	0.5	1					
RMCF0201	0.5	1					
RMCF0402	1	3					
RMCF0603	1	5					
RMCF0805	2	10	0.05 max.				
RMCF1206	2	10					
RMCF1210	3	12					
RMCF2010	3	12					
RMCF2512	3	15					

* < 1 second and 1 time

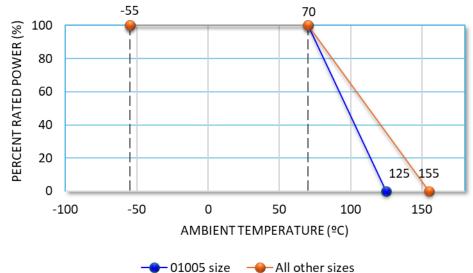
General Purpose Thick Film Standard Power and High-Power Chip Resistor

Mechanical Specifications

Type/Code	Typical Unit Weight (mg)	L Body Length	W Body Width	H Body Height	a Top Termination	b Bottom Termination	Unit	
RMCF01005	0.07	0.016 ± 0.001 0.40 ± 0.02	0.008 ± 0.001 0.20 ± 0.02	0.005 ± 0.001 0.13 ± 0.02	0.004 ± 0.001 0.10 ± 0.03	0.004 ± 0.001 0.10 ± 0.03	inches mm	
RMCF0201	0.16	0.024 ± 0.001	0.012 ± 0.001	0.009 ± 0.002	0.006 ± 0.002	0.006 ± 0.002	inches	
RMCP0201		0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.05	0.15 ± 0.05	0.15 ± 0.05	mm	
RMCF0402	0.5	0.039 ± 0.004	0.020 ± 0.002	0.012 ± 0.004	0.006 ± 0.004	0.010 ± 0.006	inches	
RMCP0402	0.62	1.00 ± 0.10	0.50 ± 0.05	0.30 ± 0.10	0.15 ± 0.10	0.25 ± 0.15	mm	
RMCF0603	1.9	0.061 ± 0.006	0.031 ± 0.006	0.018 ± 0.006	0.012 ± 0.008	0.012 ± 0.008	inches	
RMCP0603	2.0	1.55 ± 0.15	0.80 ± 0.15	0.45 ± 0.15	0.30 ± 0.20	0.30 ± 0.20	mm	
RMCF0805	5.00	0.079 ± 0.008	0.049 ± 0.004	0.020 ± 0.006	0.014 ± 0.010	0.014 ± 0.010	inches	
RMCP0805	4.37	2.00 ± 0.20	1.25 ± 0.10	0.50 ± 0.15	0.35 ± 0.25	0.35 ± 0.25	mm	
RMCF1206	8.9	0.126 ± 0.010	0.063 ± 0.006	0.022 ± 0.006	0.020 ± 0.012	0.020 ± 0.012	inches	
RMCP1206		3.20 ± 0.25	1.60 ± 0.15	0.55 ± 0.15	0.50 ± 0.30	0.50 ± 0.30	mm	
RMCF1210	15.55	0.126 ± 0.010	0.098 ± 0.010	0.022 ± 0.006	0.020 ± 0.012	0.020 ± 0.012	inches	
RMCP1210	15.96	3.20 ± 0.25	2.50 ± 0.25	0.55 ± 0.15	0.50 ± 0.30	0.50 ± 0.30	mm	
RMCF2010	23.6	0.197 ± 0.008	0.098 ± 0.008	0.022 ± 0.006	0.024 ± 0.012	0.024 ± 0.014	inches	
RMCP2010	24.2	5.00 ± 0.20	2.50 ± 0.20	0.55 ± 0.15	0.60 ± 0.30	0.60 ± 0.35	mm	
RMCF2512	40.02	0.248 ± 0.008	0.126 ± 0.010	0.022 ± 0.008	0.024 ± 0.012	0.024 ± 0.014	inches	
RMCP2512	39.45	6.30 ± 0.20	3.20 ± 0.25	0.55 ± 0.20	0.60 ± 0.30	0.60 ± 0.35	mm	

	Performance C	haracteristics		
Test	Test Specifications	Test Conditions (JIS-C 5202)		
	± (2% + 0.1Ω)	2.5 x rated voltage for 5 seconds		
Short Time Overload	Jumper: Max 0.05Ω after test	0201 = 1 A 0402 / 0603 = 2.5 A 0805 / 1206 / 1210 / 2010 / 2512 = 5 A		
Dielectric Withstanding Voltage	age No flashover or breakdown 100 VAC, 1 minute			
Resistance to Soldering Heat	± 1%	260 ± 5°C, for 10 seconds ± 0.5 seconds (Solder Bath)		
Solderability	95% coverage, minimum	$235 \pm 5^{\circ}$ C, for 2 seconds ± 0.5 seconds (Colophonium flux)		
Temperature Cycle	± (1% + 0.05Ω) Jumper (< 0.05Ω)	-65ºC: 30 minutes 25ºC: 2 to 3 minutes 155ºC: 30 minutes 25ºC: 2 to 3 minutes (5 Cycles)		
Load Life (Endurance)	1% and below: ± (1% + 0.05Ω) 2% and 5%: ± (3% + 0.1Ω) Value < 1Ω: ± (3% + 0.1Ω) Jumper: Max 0.1Ω after test.	$70 \pm 2^{\circ}$ C, RCWV or max. working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"		
Voltage Coefficient	± 100 (ppm/V)	1/10 rated voltage for 3 seconds max. then rated voltage for 3 seconds max.		
Robustness of Termination	± (1% + 0.05Ω)	Bend of 2 mm for 5 \pm 1 seconds		

General Purpose Thick Film Standard Power and High-Power Chip Resistor


Stackpole Electronics, Inc. Resistive Product Solutions

Performance Characteristics (cont.)					
Test	Test Specifications	Test Conditions (JIS-C 5202)			
Resistance to Solvent	1%: ± (0.5% + 0.05Ω) 5%: ± (0.5% + 0.05Ω) Jumper: Max. 0.05Ω after test	The tested resistor should be immersed into isopropyl alcohol of 20 to 25°C for 60 seconds. Then the resitor is left in the room for 48 hours.			
Damp Heat with Load	1%: ± (1% + 0.05Ω) 5%: ± (2% + 0.05Ω) Values < 1Ω: ± (3% + 0.1Ω) Jumper: Max. 0.1Ω after test	40 ± 2°C, 90%~95% R.H. RCWV or max. working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hours "OFF"			

Operating temperature range is -55 to +155°C for all sizes except for 01005 size

Operating temperature range for 01005 is -55 to +125°C

Power Derating Curve:

Vp(lp) or Pp

Repetitive Pulse Information

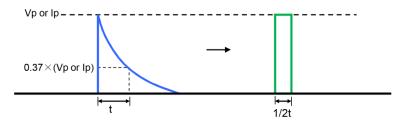
(This information is for reference only and is not guaranteed performance.)

If repetitive pulses are applied to resistors, pulse wave form must be less than "Pulse Limiting Voltage", "Pulse Limiting Current" or "Pulse Limiting Wattage" calculated by the formula below.

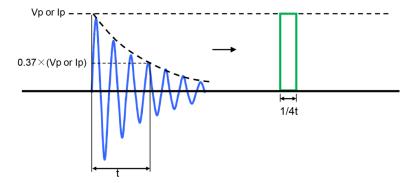
$$Vp = K\sqrt{PxRxT/t}$$

$$lp = K\sqrt{P/RxT/t}$$

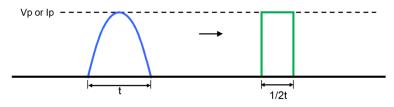
$$Pp = K^2 x P x T/t$$

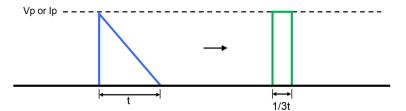

Where: Vp: Pulse limiting voltage (V)

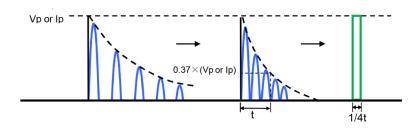
- lp: Pulse limiting current (A)
- Pp: Pulse limiting wattage (Ŵ)
- P: Power rating (W)
- R: Nominal resistance (ohm)
- T: Repetitive period (sec)
- t: Pulse duration (sec)
- K: Coefficient by resistors type (refer to below matrix)
- [Vr: Rated Voltage (V), Ir: Rated Current (A)]
- Note 1: If T > 10 \rightarrow T = 10 (sec), T/t > 1000 \rightarrow T/t = 1000
- Note 2: If T > 10 and T/t > 1000, "Pulse Limiting power (Single pulse) is applied
- Note 3: If Vp < Vr (lp < lr or Pp < P), Vr (lr, P) is Vp (lp, Pp)
- Note 4: Pulse limiting voltage (current, wattage) is applied at less than rated ambient temperature. If ambient temperature is more than the rated temperature (70°C), please decrease power rating according to "Power Derating Curve"
- Note 5: Please assure sufficient margin for use period and conditions for "Pulse Limiting Voltage"
- Note 6: If the pulse waveform is not square wave, please judge after transform the waveform into square wave according to the "Waveform Transformation to Square Wave".


RMCF Coefficient (K) Matrix					
Ohmic Value	К				
R < 10Ω	0.50				
10Ω ≤ R < 100Ω	0.45				
100Ω ≤ R < 1KΩ	0.35				
1KΩ ≤ R < 10KΩ	0.25				
10KΩ ≤ R	0.20				

Waveform Transformation to Square Wave


1. Discharge curve wave with time constant "t" \rightarrow Square wave


2. Damping oscillation wave with time constant of envelope "t" \rightarrow Square wave


3. Half-wave rectification wave \rightarrow Square wave

4. Triangular wave \rightarrow Square wave

5. Special wave \rightarrow Square wave

General Purpose Thick Film Standard Power and High-Power Chip Resistor

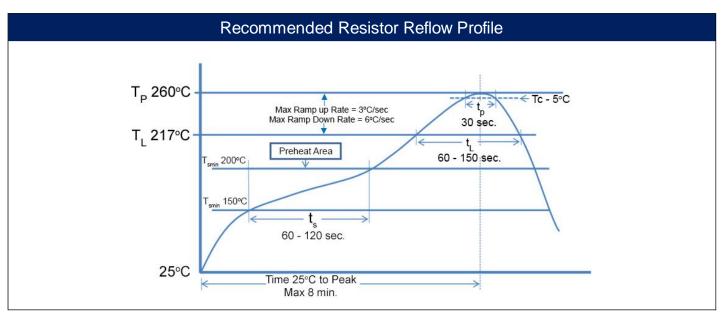
Stackpole Electronics, Inc. Resistive Product Solutions

san a

	Recommer	nded Pad Layout					
Type/Code	А	В	С	Unit			
RMCF01005	0.008	0.020	0.008	inches			
	0.20	0.50	0.20	mm			
RMCF0201	0.012	0.039	0.016	inches			
RMCP0201	0.30	1.00	0.40	mm			
RMCF0402	0.020	0.059	0.024	inches			
RMCP0402	0.50	1.50	0.60	mm			
RMCF0603	0.031	0.083	0.035	inches			
RMCP0603	0.80	2.10	0.90	mm			
RMCF0805	0.047	0.118	0.051	inches			
RMCP0805	1.20	3.00	1.30	mm			
RMCF1206	0.087	0.165	0.063	inches			
RMCP1206	2.20	4.20	1.60	mm			
RMCF1210	0.087	0.165	0.110	inches			
RMCP1210	2.20	4.20	2.80	mm			
RMCF2010	0.138	0.240	0.110	inches			
RMCP2010	3.50	6.10	2.80	mm			
RMCF2512	0.193	0.315	0.138	inches			
RMCP2512	4.90	8.00	3.50	mm			

Recommended Solder Profile

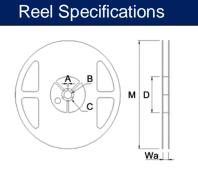
This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".


100% Matte Tin / RoHS Compliant Terminations

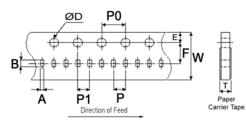
Soldering iron recommended temperatures: 330°C to 350°C with minimum duration. Maximum number of reflow cycles is 3.

Wave Soldering						
Description	Maximum	Recommended	Minimum			
Preheat Time	80 seconds	70 seconds	60 seconds			
Temperature Diff.	140°C	120°C	100°C			
Solder Temp.	260°C	250°C	240°C			
Dwell Time at Max	10 seconds	5 seconds	*			
Ramp DN (°C/sec)	N/A	N/A	N/A			

Temperature Diff. = Difference between final preheat stage and soldering stage.


Convection IR Reflow						
Description	Maximum	Recommended	Minimum			
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*			
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds			
Solder Temp.	260°C	245°C	*			
Dwell Time at Max.	30 seconds	15 seconds	10 seconds			
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*			

General Purpose Thick Film Standard Power and High-Power Chip Resistor


Resistive Product Solutions

Packaging (EIA Standard RS-481)

Reel Type	Wa	М	А	В	С	D	Unit
7" reel for	0.354 ± 0.020	7.008 ± 0.079	0.079 ± 0.020	0.531 ± 0.020	0.827 ± 0.020	2.362 ± 0.039	inches
8 mm tape	9.00 ± 0.50	178.00 ± 2.00	2.00 ± 0.50	13.50 ± 0.50	21.00 ± 0.50	60.00 ± 1.00	mm
10" reel for	0.394 ± 0.020	10.000 ± 0.079	0.079 ± 0.020	0.531 ± 0.020	0.827 ± 0.020	3.937 ± 0.039	inches
8 mm tape	10.00 ± 0.50	254.00 ± 2.00	2.00 ± 0.50	13.50 ± 0.50	21.00 ± 0.50	100.00 ± 1.00	mm

Packaging Specifications - Paper Tape (sizes 01005 - 1210)

Type/Code	Nominal Typical Full Reel Weight (g)	Tape Width	А	В	W	E	Unit
RMCF01005	127.3	0.315 8.00	$\begin{array}{c} 0.009 \ \pm \ 0.002 \\ 0.24 \ \pm \ 0.05 \end{array}$	0.018 ± 0.004 0.45 ± 0.10	0.315 ± 0.008 8.00 ± 0.20	0.069 ± 0.004 1.75 ± 0.10	inches mm
RMCF0201	97.2	0.315	0.016 ± 0.006	0.028 ± 0.006	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP0201		8.00	0.40 ± 0.15	0.70 ± 0.15	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF0402	94.5	0.315	0.028 ± 0.006	0.047 ± 0.006	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP0402		8.00	0.70 ± 0.15	1.20 ± 0.15	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF0603	118.3	0.315	0.041 ± 0.008	0.071 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP0603		8.00	1.05 ± 0.20	1.80 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF0805	139.2	0.315	0.063 ± 0.010	0.093 ± 0.010	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP0805		8.00	1.60 ± 0.25	2.35 ± 0.25	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF1206	151.4	0.315	0.077 ± 0.010	0.140 ± 0.010	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP1206		8.00	1.95 ± 0.25	3.55 ± 0.25	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF1210	175.7	0.315	0.110 ± 0.010	0.138 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP1210		8.00	2.80 ± 0.25	3.50 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	mm

RMCF / RMCP Series General Purpose Thick Film Standard Power

and High-Power Chip Resistor

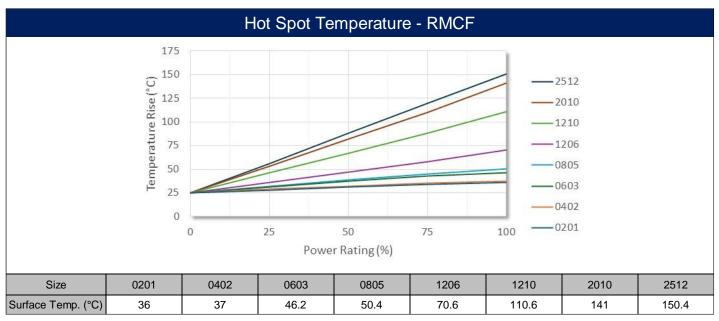
Stackpole Electronics, Inc. Resistive Product Solutions

an a

Packaging Specifications - Paper Tape (sizes 01005 - 1210)											
Type/Code	F	т	Р	P0	P1	DØ	Unit				
RMCF01005	0.138 ± 0.002	0.016 ± 0.004	0.079 ± 0.004	0.157 ± 0.004	0.079 ± 0.004	0.059 +0.004/-0	inches				
	3.50 ± 0.05	0.40 ± 0.10	2.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	1.50 +0.10/-0	mm				
RMCF0201	0.138 ± 0.002	0.015 ± 0.006	0.079 ± 0.004	0.157 ± 0.004	0.079 ± 0.004	0.059 +0.004/-0	inches				
RMCP0201	3.50 ± 0.05	0.38 ± 0.15	2.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	1.50 +0.10/-0	mm				
RMCF0402	0.138 ± 0.002	0.016 ± 0.008	0.079 ± 0.004	0.157 ± 0.004	0.079 ± 0.004	0.059 +0.004/-0	inches				
RMCP0402	3.50 ± 0.05	0.40 ± 0.20	2.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	1.50 +0.10/-0	mm				
RMCF0603	0.138 ± 0.002	0.024 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.004	0.059 +0.004/-0	inches				
RMCP0603	3.50 ± 0.05	0.60 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	1.50 +0.10/-0	mm				
RMCF0805	0.138 ± 0.002	0.030 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.004	0.059 +0.004/-0	inches				
RMCP0805	3.50 ± 0.05	0.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	1.50 +0.10/-0	mm				
RMCF1206	0.138 ± 0.002	0.030 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.004	0.059 +0.004/-0	inches				
RMCP1206	3.50 ± 0.05	0.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	1.50 +0.10/-0	mm				
RMCF1210	0.138 ± 0.002	0.030 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.004	0.059 +0.004/-0	inches				
RMCP1210	3.50 ± 0.05	0.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10	1.50 +0.10/-0	mm				

Packaging Specifications - Plastic Tape (sizes 2010 and 2512)										
A = P = OD = T $A = P = OD = T$ $A = D$ $B = D$ $C = D$ $D = D$										
Type/Code	Nominal Typical Full Reel Weight (g)	Tape Width	А	В	W	E	F	Unit		
RMCF2010 RMCP2010	183.1	0.472 12.00	0.110 ± 0.008 2.80 ± 0.20	0.217 ± 0.012 5.50 ± 0.30	0.472 ± 0.008 12.00 ± 0.20	0.069 ± 0.004 1.75 ± 0.10	0.217 ± 0.002 5.50 ± 0.05	inches mm		
RMCF2512 RMCP2512										
Type/Code	Type/Code G H T ØD ØD1 T1 P Unit									
RMCF2010 RMCP2010	0.157 ± 0.004 4.00 ± 0.10	0.079 ± 0.002 2.00 ± 0.05	0.009 ± 0.004 0.23 ± 0.10	0.059 +0.004/-0 1.50 +0.10/-0	0.059 ± 0.004 1.50 ± 0.10	0.035 ± 0.008 0.90 ± 0.20	0.157 ± 0.004 4.00 ± 0.10	inches mm		
RMCF2512 RMCP2512	0.157 ± 0.004 4.00 ± 0.10	$\begin{array}{r} 0.079 \ \pm \ 0.002 \\ 2.00 \ \pm \ 0.05 \end{array}$	0.009 ± 0.004 0.23 ± 0.10	0.059 +0.004/-0 1.50 +0.10/-0	0.059 ± 0.004 1.50 ± 0.10	0.035 ± 0.008 0.90 ± 0.20	0.157 ± 0.004 4.00 ± 0.10	inches mm		

General Purpose Thick Film Standard Power and High-Power Chip Resistor


Resistive Product Solutions

The data provided are for reference only. They are typical performance for this product but are not guaranteed. The actual pulse handling of each individual resistor may vary depending on a variety of factors including resistance tolerance and resistance value. Stackpole Electronics, Inc. assumes no liability for the use of this information. Customers should validate the performance of these products in their applications. Contact Stackpole marketing to discuss specific pulse application requirements.

Temperature Measurement of Resistor Surface										
De	scription: The	resistor surface	ce generated t	emperature va	ruation after a	pplied rade vo	ltage.			
Size	0201	0402	0603	0805	1206	1210	2010	2512		
R-V	15K	40.2K	57.6K	180K	182K	100K	100K	75K		
Rated Power (W)	1/20	1/16	1/10	1/8	1/4	1/2	3/4	1		
Max Rated Voltage (V)	25	50	75	150	200	200	200	200		

Test method: Measure component surface temperature directly after the temperature stabilizes. Test result: As per table below:

The thermal resistance of the RMCP will be similar to the RMCF. For example, the RMCF2512 and the RMCP2512 will have similar surface temperatures at 1W; the RMCP is designed to withstand higher temperatures associated with high power levels.

					Pall	Marking	FINSUL						
				E06 an	d E24 \/	alues for	NOUE 3E	17/10/ +/	aloranco	c)			
The non	ninal r	esistance i	s marked (overcoating			Jierance	:s <i>j</i>		1 21	2
		cter mark				overeduling					1R21	10	000
		<100Ω wil	-	as the decir	nal holder					-	1.21Ω	100)Ω
				E24 Va	alues foi	r 0805-25	12 (5% t	olerance	e, ≤ 0.910	2)			
						overcoating				-		D/	00
our cl		cter mark	-									R6	-
	1.	Values ≤ 0 .	91Ω will u									0.68	3Ω
	nin al r					or 0805-2	-		ce,≥1Ω)				
		acter mar		on the suna	ace of the	overcoating	, with the	use or			1R0	12	22
			-	0 will use	"R" as the	decimal ho	lder				1Ω	1.2	K0
7. V	2.400	Jethoon I				E24 Valu		603				1.21	
The non	ninal r	esistance is	s marked	on the surfa	ace of the	overcoating			8				-
hree o	chara	acter mar	kings.			-			R68		100	22	1
						ne decimal h	older.		2			2	1
		≥10Ω will u			••				0.68Ω 5%	6 1	0Ω 5%	220Ω	2 1%
						underlined.	- (1)						
						codes on/or Irking rules.	after Apri	11 2025)					
	alues						.						
A two	charad	cter numbe	r is assign				•	% tolera	nces)				
	chart b	oelow. Thi	s is follow	ed to each ed by one	standard alpha cha	R-Value (Es racter which	96) as sho i is used a	own in	nces)			03	
	chart t multij	pelow. Thi plier. Each	s is follow letter from	ed to each ed by one "Y" - "F" re	standard alpha cha epresents	R-Value (Es racter which a specific m	96) as sho n is used a nultiplier.	own in	nces)			03	
	chart t multij Alp	pelow. Thi plier. Each ha Charact	s is follow letter from	ed to each ed by one a n "Y" - "F" re	standard alpha cha	R-Value (Es racter which a specific m	96) as sho i is used a	own in as a	nces)				
	chart k multij Alp Y	pelow. Thi plier. Each	s is follow letter from er = Multij	ed to each ed by one a n "Y" - "F" re plier	standard alpha cha epresents Chip Mar	R-Value (E9 racter which a specific m king = 10.0 x = 17.8 x	06) as sho i is used a pultiplier. Value < 100 = 1 < 1000 = 7	own in as a KΩ 17.8 KΩ	nces)				
	chart t multij Alp Y X A	below. Thi plier. Each ha Charact = 0.1 = 1 = 10	s is follow letter from C = 100 D = 100 E = 100	ed to each ed by one a "Y" - "F" re plier 00 000 0000	standard alpha cha epresents Chip Mar 01B =	R-Value (E9 racter which a specific m king = 10.0 x = 17.8 x	96) as sho n is used a nultiplier. Value < 100 = 1	own in as a KΩ 17.8 KΩ	nces)				
	chart t multij Alp Y X A	below. Thi plier. Each ha Charact = 0.1 = 1	s is follow letter from er = Multij C = 100 D = 100	ed to each ed by one a "Y" - "F" re plier 00 000 0000	standard alpha cha epresents Chip Mar 01B = 25C =	R-Value (E9 racter which a specific m king = 10.0 x = 17.8 x	06) as sho i is used a pultiplier. Value < 100 = 1 < 1000 = 7	own in as a KΩ 17.8 KΩ	nces)				
	chart t multij Alp Y X A	below. Thi plier. Each ha Charact = 0.1 = 1 = 10	s is follow letter from C = 100 D = 100 E = 100	ed to each ed by one a "Y" - "F" re plier 00 000 0000	standard alpha cha epresents Chip Mar 01B = 25C =	R-Value (E9 racter which a specific m king = 10.0 x = 17.8 x	26) as sho i is used a nultiplier. Value (100 = 1 (1000 = 1 (1000 = 1)	own in as a KΩ 17.8 KΩ	nces)				
the c	chart t multij Alp Y X A B #	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value R-Value	s is follow letter from er = Multij C = 100 E = 100 F = 100 F = 100	ed to each ed by one i "Y" - "F" re plier 200 2000 20000 20000 R-Value	standard alpha cha epresents Chip Mar 01B = 25C = 93D = #	R-Value (ES racter which a specific m king 10.0) 17.8) 90.9) E9 R-Value	06) as sho i is used a nultiplier. Value < 100 = 1 < 1000 = 1 < 1000 = 1 < 1000 = 1 < 10000 = 1 < 10000 = 1 < 10000 = 1	own in as a KΩ 17.8 KΩ 909 KΩ R-Value	#	R-Value	#	10.5 R-Value	
	chart t multij Alp Y X A B B # 01	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0	s is follow letter from er = Multipulation C = 100 D = 100 E = 100 F = 100 # 17	ed to each ed by one : "Y" - "F" re plier 00 000 0000 00000 R-Value 14.7	standard alpha cha epresents Chip Mar 01B = 25C = 93D = # 33	R-Value (ES racter which a specific m i 10.0 y 17.8 y 90.9 y Eg R-Value 21.5	26) as sho i is used a nultiplier. Value (100 = 1 (1000 = 1 (1000 = 1) (1000 = 2) (1000	own in as a KΩ 17.8 KΩ 909 KΩ R-Value 31.6	#	46.4	81	10.5 R-Value 68.1	
	chart t multij Alp Y X A B B # 01 02	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.2	s is follow letter from er = Multiple C = 100 D = 100 E = 100 F = 100 # 17 18	ed to each ed by one - "Y" - "F" re plier 200 2000 20000 20000 R-Value 14.7 15.0	standard alpha cha epresents Chip Mar 01B = 25C = 93D = 93D = # 33 34	R-Value (E9 racter which a specific m i 10.0 y 17.8 y 90.9 y E9 R-Value 21.5 22.1	26) as sho i is used a nultiplier. Value (100 = 1 (1000 = (10000 =	own in as a KΩ 17.8 KΩ 909 KΩ 8.Value 31.6 32.4	# 65 66	46.4 47.5	81 82	10.5 R-Value 68.1 69.8	
	chart t multij Alp Y X A B B # 01	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0	s is follow letter from er = Multipulation C = 100 D = 100 E = 100 F = 100 # 17	ed to each ed by one : "Y" - "F" re plier 00 000 0000 00000 R-Value 14.7	standard alpha cha epresents Chip Mar 01B = 25C = 93D = # 33	R-Value (ES racter which a specific m i 10.0 y 17.8 y 90.9 y Eg R-Value 21.5	26) as sho i is used a nultiplier. Value (100 = 1 (1000 = 1 (1000 = 1) (1000 = 2) (1000	own in as a KΩ 17.8 KΩ 909 KΩ R-Value 31.6	#	46.4	81	10.5 R-Value 68.1	
	chart k multij Alp Y X A B # 01 02 03 04 05	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0	s is follow letter from er = Multiple C = 100 D = 100 E = 100 F = 100 F = 100 # 17 18 19 20 21	ed to each ed by one - "Y" - "F" re plier 00 000 0000 00000 00000 00000 R-Value 14.7 15.0 15.4 15.8 16.2	standard alpha cha epresents Chip Mar 01B = 25C = 93D = 93D = 93D = 93D = 93D = 33 34 35 36 37	R-Value (E9 racter which a specific m in 10.0 y 17.8 y 90.9 y E9 R-Value 21.5 22.1 22.6 23.2 23.7	26) as sho is used a nultiplier. Value (100 = 1 (1000 = 1 (1000 = 1 (1000 = 1 (1000 = 1) (1000 =	wn in as a KΩ 17.8 KΩ 909 KΩ 909 KΩ 31.6 32.4 33.2 34.0 34.8	# 65 66 67 68 69	46.4 47.5 48.7 49.9 51.1	81 82 83 84 85	10.5 R-Value 68.1 69.8 71.5 73.2 75.0	
	chart k multij Alp Y X A B # 01 02 03 04 05 06	below. Thi plier. Each ha Charact = 0.1 = 10 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.3	s is follow letter from er = MultipleC = 100D = 100E = 100F = 100F = 100F = 100F = 20202122	ed to each ed by one a "Y" - "F" re plier 00 0000 0000 00000 00000 00000 00000 0000	standard alpha cha epresents Chip Mar 01B = 25C = 93D	R-Value (E9 racter which a specific m in 10.0 y 17.8 y 90.9 y E9 R-Value 21.5 22.1 22.6 23.2 23.7 24.3	26) as sho is used a nultiplier. Value (100 = 1) (1000 = 1)	wn in as a KΩ 17.8 KΩ 909 KΩ 909 KΩ 31.6 32.4 33.2 34.0 34.8 35.7	# 655 66 67 68 69 70	46.4 47.5 48.7 49.9 51.1 52.3	81 82 83 84 85 86	10.5 R-Value 68.1 69.8 71.5 73.2 75.0 76.8	
	chart k multij Alp Y X A B # 01 02 03 04 05 06 07	below. Thi plier. Each ha Charact = 0.1 = 10 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5	s is follow letter from er = Multiple = 100 D = 100 E = 100 F = 100 F = 100 H 17 18 19 20 21 22 23	ed to each ed by one a "Y" - "F" re plier 00 0000 0000 00000 00000 00000 00000 0000	standard alpha cha epresents Chip Mar 01B = 25C = 93D	R-Value (E9 racter which a specific m in 10.0 y 17.8 y 90.9 y E9 R-Value 21.5 22.1 22.6 23.2 23.7 24.3 24.9	P(6) as shown is used a substitute of the second state of the s	κρ as a ΚΩ 17.8 ΚΩ 909 ΚΩ 8 31.6 32.4 33.2 34.0 34.8 35.7 36.5	# 65 66 67 68 69 70 71	46.4 47.5 48.7 49.9 51.1 52.3 53.6	81 82 83 84 85 86 87	R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7	
	chart k multij Alp Y X A B # 01 02 03 04 05 06	below. Thi plier. Each ha Charact = 0.1 = 10 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.3	s is follow letter from er = MultipleC = 100D = 100E = 100F = 100F = 100F = 100F = 20202122	ed to each ed by one a "Y" - "F" re plier 00 0000 0000 00000 00000 00000 00000 0000	standard alpha cha epresents Chip Mar 01B = 25C = 93D	R-Value (E9 racter which a specific m in 10.0 y 17.8 y 90.9 y E9 R-Value 21.5 22.1 22.6 23.2 23.7 24.3	26) as sho is used a nultiplier. Value (100 = 1) (1000 = 1)	wn in as a KΩ 17.8 KΩ 909 KΩ 909 KΩ 31.6 32.4 33.2 34.0 34.8 35.7	# 655 66 67 68 69 70	46.4 47.5 48.7 49.9 51.1 52.3	81 82 83 84 85 86	10.5 R-Value 68.1 69.8 71.5 73.2 75.0 76.8	
	chart k multij Alp Y X A B U 1 02 03 04 05 06 07 08	below. This plier. Each ha Charact = 0.1 = 10 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8	s is follow letter from er = Multiple = 100 D = 100 E = 100 F = 100 F = 100 H 17 18 19 20 21 22 23 24	ed to each ed by one of "Y" - "F" re plier 00 0000 0000 00000 00000 00000 00000 0000	standard alpha cha epresents Chip Mar 01B = 25C = 93D	R-Value (E9 racter which a specific m in 10.0 x i 17.8 x 90.9 x E9 R-Value 21.5 22.1 22.6 23.2 23.7 24.3 24.9 25.5	P(6) as sho is used a nultiplier. Value (100 = 1) (1000 = 1) (10000 = 1) (100000 = 1) (10000 = 1) (100000 = 1) (10000 = 1) (100000 = 1) (100000 = 1)	wn in as a KΩ 17.8 KΩ 909 KΩ 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4	# 65 66 67 68 69 70 71 71 72	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9	81 82 83 84 85 86 87 88	R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6	
	chart k multij Alp Y X A B U U 01 02 03 04 05 06 07 08 09 10 11	below. This plier. Each ha Charact = 0.1 = 10 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7	s is follow letter from er = Multiple = 100 D = 100 E = 100 F = 100 F = 100 H 17 18 19 20 21 22 23 24 25 26 27	ed to each ed by one of "Y" - "F" re oo 0000 0000 0000 0000 0000 0000 0000	standard alpha cha epresents Chip Mar 01B = 25C = 93D	R-Value (E9 racter which a specific m in 10.0) 17.8 y 90.9 y E9 R-Value 21.5 22.1 22.6 23.7 24.3 24.9 25.5 26.1 26.7 27.4	06) as sho i is used a nultiplier. Value <100 = 1 <1000 = 1 <1000 = 1 <10000 = (10000 = (10000 (10000 (10000 (10000 (10000) (10000 (10000)	κΩ 17.8 KΩ 909 KΩ 8 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2	# 65 66 67 68 69 70 71 71 72 73 74 75	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0	81 82 83 84 85 86 87 88 89 90 91	R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6	
	chart k multij Alp Y X A B 01 02 03 04 05 06 07 08 09 10 11 12	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0	s is follow letter from er = Multij C = 100 D = 100 E = 100 F = 100 F = 100 I I I I I I I I I I	ed to each ed by one of "Y" - "F" re plier 00 0000 0000 0000 0000 0000 0000 000	standard alpha cha epresents Chip Mar 01B = 25C = 93D = 940 940 940 940 940 940 940 940 940 940	R-Value (Es racter which a specific m in 10.0) 17.8 y 90.9 y Eg R-Value 21.5 22.1 22.6 23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0	P(6) as shown is used a subtribution of the second state of the	κΩ 17.8 KΩ 909 KΩ 31.6 32.4 33.2 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2	# 65 66 67 68 69 70 71 72 73 74 75 76	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4	81 82 83 84 85 86 87 88 89 90 91 92	R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7	
	chart k multij Alp Y X A B 01 02 03 04 05 06 07 08 09 10 11 12 13	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0 13.3	s is follow letter from er = Multij C = 100 D = 100 E = 100 F = 100 F = 100 I I I I I I I I I I	ed to each ed by one of "Y" - "F" re plier 00 0000 0000 0000 0000 0000 0000 000	standard alpha cha epresents Chip Mar 01B = 25C = 93D	R-Value (Es racter which a specific m in 10.0) 17.8) 90.9) R-Value 21.5 22.1 22.6 23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0 28.7	p_{6}) as sho is used a sultiplier. Value (100 = 1) (1000 = 1)	κΩ 17.8 KΩ 909 KΩ 8 8 909 KΩ 8 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2 42.2	# 65 66 67 68 69 70 71 72 73 74 75 76 77	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4 61.9	81 82 83 84 85 86 87 88 88 89 90 91 91 92 93	R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9	
	chart k multij Alp Y X A B 01 02 03 04 05 06 07 08 09 10 11 12	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0	s is follow letter from er = Multij C = 100 D = 100 E = 100 F = 100 F = 100 I I I I I I I I I I	ed to each ed by one of "Y" - "F" re plier 00 0000 0000 0000 0000 0000 0000 000	standard alpha cha epresents Chip Mar 01B = 25C = 93D = 940 940 940 940 940 940 940 940 940 940	R-Value (Es racter which a specific m in 10.0) 17.8 y 90.9 y Eg R-Value 21.5 22.1 22.6 23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0	P(6) as shown is used a subtribution of the second state of the	κΩ 17.8 KΩ 909 KΩ 31.6 32.4 33.2 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2	# 65 66 67 68 69 70 71 72 73 74 75 76	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4	81 82 83 84 85 86 87 88 89 90 91 92	R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7	
	chart k multij Alp Y X A B 01 02 03 04 05 06 07 08 09 10 11 12 13 14	below. Thi plier. Each ha Charact = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0 13.3 13.7	s is follow letter from er = Multij C = 100 D = 100 E = 100 F = 100 F = 100 I I I I I I I I I I	ed to each ed by one a "Y" - "F" re plier 00 0000 0000 0000 0000 0000 0000 000	standard alpha cha epresents Chip Mar 01B = 25C = 93D = 940 940	R-Value (Es racter which a specific m in 10.0) 17.8) 90.9) R-Value 21.5 22.1 22.6 23.7 24.3 24.9 25.5 26.1 26.7 27.4 28.0 28.7 29.4	P6) as sho is used a sultiplier. Value < 100 = 1 < 1000 = 1 < 10000 = 1 < 10000 = 1 < 1000 = 1 < 1000 = 1	κΩ 17.8 KΩ 909 KΩ 8 8 8 8 8 909 KΩ 8 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2 42.2 43.2	# 65 66 67 68 69 70 71 72 73 74 75 76 77 78	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4 61.9 63.4	81 82 83 84 85 86 87 88 88 89 90 91 91 92 93 94	R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1	

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

RoHS Compliance Status									
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)			
RMCF	General Purpose Thick Film Standard Power Chip Resistor	SMD	YES ⁽¹⁾	100% Matte Sn over Ni	Jan-04 (Japan) Jan-05 (Taiwan, China)	04/01 05/01			
RMCP	General Purpose Thick Film High-Power Chip Resistor	SMD	YES ⁽¹⁾	100% Matte Sn over Ni	Always	Always			

Note (1): RoHS Compliant by means of exemption 7c-I.

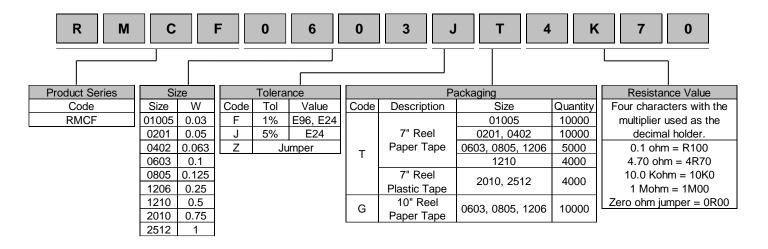
"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

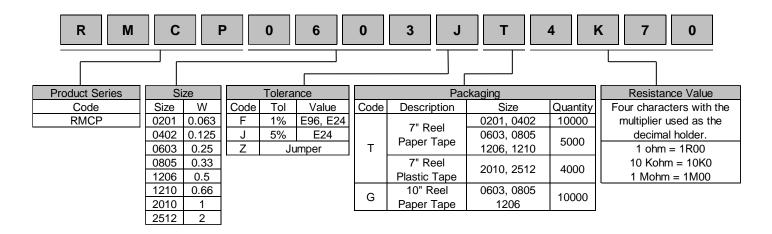
Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy


It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

RMCF / RMCP Series General Purpose Thick Film Standard Power and High-Power Chip Resistor


Stackpole Electronics, Inc.

Resistive Product Solutions

How to Order - RMCF

How to Order - RMCP

